Loading
0000002052 16W 2SWS VO Effective Field Theories   Hilfe Logo

LV - Detailansicht

Wichtigste Meldungen anzeigenMeldungsfenster schließen
Allgemeine Angaben
Effective Field Theories 
0000002052
lecture
2
Winter semester 2016/17
Chair of Theoretical Physics (T39) - Applied Quantum Field Theory (N.N.)
(Contact information)
Details
Angaben zur Abhaltung
The lecture course will provide an introduction to effective field theories (EFTs) and renormalization techniques with applications ranging from high energy to atomic physics. The following topics will be covered:

* Principles of EFTs
o Scales and systems in nature
o What is an EFT and how to construct it
o Example: the Euler-Heisenberg Lagrangian
o Example: the Fermi theory of weak interactions at tree level
o Example: the Rayleigh scattering
o Relevant, irrelevant and marginal operators
o Quantum loops of irrelevant operators
o Mass-dependent vs mass-independent regularization schemes
o Dimensional regularization
o Quantum loops of marginal operators
o Example: β function and running coupling constant in QED and QCD
o Decoupling theorem
o Example: the one and two loop matching of the QCD strong-coupling constant in MSbar
o Renormalization group equations in QFTs and EFTs
o Anomalous dimensions
o Mixing
o Example: ΔS = 2 transition amplitude in the Fermi theory of weak interactions
* Heavy quark effective theory
o Heavy-light meson spectrum
o Heavy-quark spin-flavour symmetry
o Static Lagrangian
o Spectroscopy implications
o Heavy meson decay constants
o Transition form factors: Isgur-Wise functions
o Example: B → D transitions and calculation of dΓ(B → D e ν)/dq²
o Renormalization of composite operators
o Example: heavy-light currents and heavy-heavy currents
o Heavy meson decay constants at LL and NLO
o The 1/m expansion of the HQET Lagrangian
o Reparameterization invariance
o Chromomagnetic coupling and hyperfine splitting at LL
o Decoupling in the HQET
o B → D e ν and Luke's theorem
* Applications to atomic physics
o Bound states in QED: physical picture, scales, degrees of freedom
o NRQED: Lagrangian, power counting, matching
o Four-fermion operators
o Example: matching of dimension six four-fermion operators and the positronium decay width
o pNRQED: Lagrangian, power counting, matching
o Example: the hydrogen atom and the Lamb shift
o Example: the Rayleigh scattering in pNRQED
Quantum Mechanics 1 + 2 and some basic knowledge of Quantum Field Theory and the Standard Model
  • English
  • German
Details
Für die Anmeldung zur Teilnahme müssen Sie sich in TUMonline als Studierende*r identifizieren.
Zusatzinformationen