Loading
0000003481 20W 4SWS VI Partial Differential Equations for Electrical Engineering   Hilfe Logo

LV - Detailansicht

Wichtigste Meldungen anzeigenMeldungsfenster schließen
Allgemeine Angaben
Partial Differential Equations for Electrical Engineering 
0000003481
Vorlesung mit integrierten Übungen
4
Wintersemester 2020/21
Professur für Computational Photonics (Prof. Jirauschek)
(Kontakt)
Details
Zuordnungen: 1 
Angaben zur Abhaltung
- Partial differential equations in electrical engineering and physics
- Characteristics; elliptic, parabolic and hyperbolic type
- Potential theory: Green's theorem, Green's functions, conformal mapping
- Wave equation: D'Alembert's formula, separation, boundary and initial values, eigenvalues and eigenfunctions,
orthogonality, cylindrical problems, Bessel functions, separation with wave ansatz, stability criteria
- Diffusion equation: ansatz for confined, semi-infinite und and infinite space
- Numerical methods for solving partial differential equations and implementation in Matlab
Fundamental knowledge of linear algebra and analysis (e.g., linear differential equations, series, linear mapping, matrices). Basic equations of mechanics and electromagnetics
After the successful completion of this module, the students will be able to
- apply partial differential equations to problems relevant in electrical engineering and physics
- apply various analytical and numerical solution methods and strategies to the solution of linear partial differential equations
Englisch
Vorlesung mit integrierten Übungen
lecture with exercises
In addition to the individual learning methods of the student, an improved understanding is targeted by solving problem sets and performing computer exercises in individual and group work. The theoretical background will be provided in the lectures based on traditional methods (computer-based presentations, discussion). The exercises are based on interactive work (solving problem sets, computer exercises), the practica involve independent work.
Details
Für die Anmeldung zur Teilnahme müssen Sie sich in TUMonline als Studierende*r identifizieren.
Zusatzinformationen
Online Unterlagen
E-Learning Kurs (Moodle)
MID = [EI0702]